Effectiveness of using the REAtouch® during intensive and functional HABIT-ILE intervention for children with unilateral cerebral palsy

We are pleased to announce the publication of a randomised controlled trial evaluating the effectiveness of an intensive and functional HABIT-ILE (Hand and Arm Bimanual Intensive Therapy Including Lower Extremities) camp including sessions with the REAtouch®. This study showed non-inferiority of changes in the upper extremities for children with unilateral cerebral palsy, in comparison with a usual HABIT-ILE intensive intervention, without REAtouch® based sessions(1). The full text published in the Journal of NeuroEngineering and Rehabilitation is available here.

What are REAtouch® and HABIT-ILE ? 

REAtouch® is an interactive electro-medical device designed to assist therapists in the rehabilitation and assessment of the upper limb of brain injured patients. This device allows the repetition of functional uni- and bi-manual movements using serious games in interaction with real objects. The development of the REAtouch® is based on a collaboration between Axinesis and the Intensive Rehabilitation Foundation (IRF). This collaboration started with the observation that virtual devices designed for rehabilitation had not been developed to enable clinicians to apply the evidence-based motor skill learning principles. The aim of this collaboration was to develop a virtual device designed to promote the application of evidence-based interventions in the routine care of patients with cerebral palsy and stroke. As a result, the REAtouch® helps therapists to structure their intervention and apply interventions based on motor skills training (e.g. HABIT-ILE).

HABIT-ILE is an evidence-based motor function intervention focusing on bimanual coordination, postural control, and stimulation of the lower extremities. Developed by Pr. Yannick Bleyenheuft and her team(2), its efficacy has been demonstrated in children with cerebral palsy(3–6) and is currently under investigation for stroke adults(7). Delivered in the form of intensive camps (50h-90h of rehabilitation in two weeks), HABIT-ILE intervention aims to reach functional goals, determined by patients themselves, through the training of motor and functional abilities of the upper/lower-extremities and trunk control.

Combining HABIT-ILE and the REAtouch®?

The collaboration between Axinesis and the research team of Pr. Yannick Bleyenheuft (MSL-IN lab, UCLouvain) led to a randomized controlled trial designed to test (1) the effectiveness of implementing the REAtouch® device during a HABIT-ILE intervention, and (2) the opportunity for therapists to apply motor skill learning principles during REAtouch® based sessions(1). For this study, 40 children with unilateral cerebral palsy were randomly assigned to the REAtouch® experimental group (40% of therapeutic time with therapist using the REAtouch®) or to a control group (HABIT-ILE without REAtouch®) for a 90-hour HABIT-ILE intervention (2 weeks). The authors found significant improvements in both groups for most outcome measures (p < 0.05). The children in the REAtouch® group showed non-inferior changes in comparison with the HABIT-ILE intervention without REAtouch®, in terms of upper limb motor abilities, transfer to daily life activities 

and achievement of functional goals. In contrast, fewer changes were observed in the REAtouch® group for lower extremities motor function (likely due to the difficulty of implementing challenging activities for the lower extremities during REAtouch® based sessions).

Finally, in this high-level evidence study, the authors argued that the principles of motor skill learning required for HABIT-ILE can be applied during REAtouch®-based sessions. They also recommend customised training for clinicians using REAtouch® as a rehabilitation device to ensure the effectiveness of treatment and the proper use of REAtouch® based on evidence-based recommendations.

These encouraging results led to the creation of a consortium involving Axinesis, Arsalis, UCLouvain and HELHa. The aim of this consortium is to develop a tele-rehabilitation solution combining REAtouch® Lite and the HABIT-ILE method. This solution aims to offer intensive and functional rehabilitation, as well as an assessment protocol, directly at home to brain-injured patients. Initial results have shown that it is feasible to combine the REAtouch® Lite with the HABIT-ILE method at home to rehabilitate adults and children with brain injuries(8). Two randomised controlled trials evaluating the efficacy and cost-effectiveness of these protocols in adults and children were started during summer 2023 (Clinical trials: NCT05740605 and NCT05727111).

To conclude

This randomized controlled trial showed that the REAtouch® might be an interesting supporting device for clinicians who desire to apply the principles of HABIT-ILE for motor function rehabilitation (i.e. therapeutic principles of motor skill learning).

The Axinesis ambition is that any therapy complying with neuro-rehabilitation recommendations, including the principles of motor learning, can be optimized through the use of the REAtouch® device.

1. Saussez G, Bailly R, Araneda R, Paradis J, Ebner-Karestinos D, Klöcker A, et al. Efficacy of integrating a semi-immersive virtual device in the HABIT-ILE intervention for children with unilateral cerebral palsy: a non-inferiority randomized controlled trial. J NeuroEngineering Rehabil. 2023;20(1):98.

2. Bleyenheuft Y, Gordon AM. Hand-Arm Bimanual Intensive Therapy Including Lower Extremities (HABIT-ILE) for Children with Cerebral Palsy. Phys Occup Ther Pediatr. nov 2014;34(4):390‑403.

3. Araneda R, Klöcker A, Ebner-Karestinos D, Sogbossi ES, Renders A, Saussez G, et al. Feasibility and effectiveness of HABIT-ILE in children aged 1 to 4 years with cerebral palsy: A pilot study. Ann Phys Rehabil Med. 2021;64(3).

4. Araneda R, Ebner-Karestinos D, Paradis J, Klöcker A, Saussez G, Demas J, et al. Changes Induced by Early Hand-Arm Bimanual Intensive Therapy Including Lower Extremities in Young Children With Unilateral Cerebral Palsy: A Randomized Clinical Trial JAMA Pediatr. 2024 Jan 1;178(1):19-28. doi: 10.1001/jamapediatrics.2023.4809.

5. Bleyenheuft Y, Arnould C, Brandao MB, Bleyenheuft C, Gordon AM. Hand and Arm Bimanual Intensive Therapy Including Lower Extremity (HABIT-ILE) in Children With Unilateral Spastic Cerebral Palsy: A Randomized Trial. Neurorehabil Neural Repair. 2015;29(7):645‑57.

6. Bleyenheuft Y, Ebner-Karestinos D, Surana B, Paradis J, Sidiropoulos A, Renders A, et al. Intensive upper- and lower-extremity training for children with bilateral cerebral palsy: a quasi-randomized trial. Dev Med Child Neurol. 2017;59(6):625‑33.

7. Ebner-Karestinos D, Gathy E, Carton De Tournai A, Herman E, Araneda R, Dricot L, et al. Hand-Arm Bimanual Intensive Therapy Including Lower Extremities (HABIT-ILE) in adults with chronic stroke: protocol of a randomised controlled trial. BMJ Open. 2023;13(4):e070642.

8. Rosseli Z, et al. HABIT-ILE@home for children with cerebral palsy and adults with stroke : a pilot study. 2022; Congress of Tech to Rehabilitation, University of Hasselt.

First clinical evaluation of the REAtouch® Home, for a personalised, functional and long-term neurorehabilitation at home.

The team of Professor Thierry LEJEUNE, medical practitioner from the physical medicine and rehabilitation department of the Cliniques universitaires Saint-Luc, has started the first clinical evaluation of the REAtouch® Home for stroke patients.

The REAtouch® Home from Axinesis, is a software allowing patients to perform personalised, functional and long-term neurorehabilitation from a tablet or desktop at home. The therapy is performed in autonomy as self-rehabilitation, thanks to a personalised therapeutic program provided by the therapist. The therapy is regularly adapted at a distance, in accordance with the evolving needs of the patient, thanks to a tele-rehabilitation module integrated in the REAtouch® Home platform.

The objective of this first study is to assess the feasibility of using the REAtouch® Home in autonomy in a home-setting. The patients’ feedbacks will enable the optimization of the application and provide first clinical data on this innovative neurorehabilitation approach, combining therapeutic games, self- and tele-rehabilitation.

Enabling the combined implementation of evidence-based neurorehabilitation concepts like serious gaming, self- and tele-rehabilitation, we believe that the REAtouch® Home can have a significant impact for the long-term rehabilitation of stroke patients at home.

Der REAplan® 3.4 – Ein neues Design mit verbesserter Zugänglichkeit

Anfang 2023 bringt Axinesis die neue Version des Endeffektor-Roboters auf den Markt. Den REAplan® 3.4 Eine verbesserte Benutzerfreundlichkeit und einfachere Anpassungsfähigkeit zeichnen die neue Version 3.4 aus.

Dank des Feedbacks der Therapeuten:innen, die den REAplan® im Rahmen ihrer täglichen Arbeit einsetzen, konnte das Gerät optimiert und an die Bedürfnisse aller Patienten angepasst werden. 

Der REAplan® 3.4 kann jetzt für die Behandlung von allen Patienter, unabhängig von der schwere und Art ihrer Erkrankung in jeder Phase der Rehabilitation eingesetzt werden. Zudem kann das Gerät über jede technische Plattform jedweder Konfiguration und Größe betrieben werden. 

REAplan_3.4_bas

Was sind seine neuen Funktionen ?

  • Vergrößerter Bereich der Höhenverstellung: Der Bereich der Höhenverstellung wurde um 25cm vergrößert, was die Anpassung an die Bedürfnisse des Patienter sowohl in sitzender als auch in stehender Position verbessert. Die minimale Höhe liegt nun bei 58cm und die maximale Höhe bei 124cm.
  • Bessre Zugänglichkeit für den Patienten : Dank der Neupositionierung des Schaltkastens (20cm tiefer und 45cm weiter hinten) gibt es mehr Platz für alle Arten von Rollstühlen. Patienten können nun auch mit ausgefahrenen Beinen an dem REAplan® 3.4 behandelt werden.
  • Verbesserte Robustheit : Das Gerät ist jetzt mit 4 statt 2 Beinen ausgestattet, was seine Stabilität verbessert.
  • Integration von Lenkrädern : Der Roboter ist mobil und kann so leicht in Ihrem Reha-Übungsraum bewegt werden. 

Der REAplan®, jetzt auch für spastische Patienten

IMG_5977

Dank neuer Funktionen in der REAplan-Software konnten wie die Anwendung für Patienter mit schewerer Spastik verbessern. Diese Aktualisierung ermöglicht eine kontinuierliche Anpassung der Viskosität der Bewegung des Endeffektor-Griffs in Bezug auf die Spastizität des Patienten. Darüber hinaus haben wir eine Verbindung zwischen der Viskosität des Bewegungen und dem REAplan-Protokoll zur Bewertung der Spastizität hergestellt. Diese Verbindung ermöglicht es, die Dämpfung objektiv und quantitativ an die Bedürfniss und die Entwicklung des Patienter anzupassen. 

Wenn Sie am REAplan interessiert sind, klicken Sie auf die Schaltfläche unter und füllen Sie das Formular aus. 

New Chief Medical Officer (CMO) started at Axinesis from the 1st of September !

Since the 1st of September, a new member has joined Axinesis. Maxime Gilliaux, physiotherapist, doctor in motor sciences and Executive MBA in health, is now our Chief Medical Officer. He becomes our clinical and research referent for all of our collaborators.

Can you introduce yourself in a few words?

My name is Maxime Gilliaux, the new Chief Medical Officer (CMO) at Axinesis. As far as my background is concerned, I am a physiotherapist, a doctor in motor sciences and also hold an Executive MBA in health.

I have had different experiences in clinical, research and management fields.

More specifically, I had the chance to work with a team of researchers, clinicians and engineers linked to UCL, including Julien Sapin, CTO and founder of Axinesis. Together, we produced the first scientific evidences on the interest of the REAplan in the evaluation and rehabilitation of cerebral palsy patients, both adults and children. In terms of management, I created and directed a research department in a rehabilitation hospital while at the same time being part of its management committee as clinical project manager.

I think that the synergy of these skills will be a real asset in my responsibilities as CMO at Axinesis.

What are your responsibilities at Axinesis?

Within Axinesis, I will be the clinical and research referent for patients, health professionals, scientists, authorities, and other collaborators.

My responsibilities will be to bring a clinical and research vision to the company. At the clinical level, we will develop with the team innovative solutions that meet the needs of the patient and the therapist. In addition, we will train them to use our devices in an optimal way. On the research side, we will work with a number of researchers to validate the clinical protocols through scientific publications. 

What is your favorite game on the REAtouch?

I like the REAcooking game because of its graphic and functional aspects for the patient. Moreover, I like cooking a lot and I am very greedy!

Proven effectiveness of early Robotic Assisted Therapy for upper limb rehabilitation after stroke

Workspace of REAplan

Study provides further evidence for the effectiveness of robot-assisted therapy in stroke upper limb rehabilitation

Robot-assisted therapy (RAT) is of significant interest in early rehabilitation, when neuroplasticity is high but motor control is frequently insufficient for patients to independently practice functional movements. Many patients with stroke experience persistent upper limb (UL) impairments. This single-blind, randomized, controlled trial[i] explored the impact of partially substituting conventional therapy (CT) with RAT on the three International Classification of Functioning, Disability and Health (ICF) domains.

MethodsWorkspace of REAplan

Forty-five patients with acute stroke were randomized to receive dose-matched interventions over nine weeks. The first received conventional therapy (CT). In the second group, four CT sessions per week (25%) were substituted by RAT using our REAplan® end-effector robot to perform a game moving the paretic hand along a trajectory, with the robot assisting as needed.

Assessments were performed by the same blinded evaluator at inclusion (T0), after the intervention (TI), and at six months after stroke (T2). They were:

  • Upper limb motor impairments – FMA-UE (motor control) and box and block test (BBT –gross manual dexterity)
  • Activity limitations – Wolf Motor Function Test (S-WMFT), and Abilhand and Activlim questionnaires
  • Social participation – subscore of the Stroke Impact Scale (SISsb).

Results

Main findings were:

  • The RAT group performed a mean (SD) of 520 (437) movements per session.
  • The RAT group showed significantly greater improvement in gross manual dexterity than CT group (P = 0.02). Between T0 and T2, BBT scores improved from a mean of 3.0 (8.3) to 12.7 (17.3) blocks in RAT, but only from 3.8 (7.5) to 5.1 (9.8) blocks in the CT group.
  • UL motor activity improved more in the RAT than CT group (P= 0.02). Between T0 and T2, the S-WFMT score improved from a mean of 16% (21.4) to 39% (36.6) in RAT, but from 19% (23.6) to just 25% (33.1) in the CT group.
  • FMA-UE results showed a positive trend in favor of the RAT group (P = 0.058)
  • Social participation scores also improved significantly more in the RAT group (P = 0.01). Between T0 and T2, SISsb improved from a mean of 36% (21.4) to 59% (24.1) in the RAT group, but only from 45% (26.6) to 47% (31.5) in the CT group.

Discussion and conclusion

This study supports evidence that using RAT to partially substitute CT in the early rehabilitation phase is at least as effective, or even better, at improving UL and ADL function than CT alone. This study was also the first to assess the ICF social participation domain. The authors suggest greater improvements can be explained by the effect of the robotic device itself, which allows clinicians to deliver therapy using key motor recovery factors including high intensity and repetitive, task-oriented movement training.

Moreover, RAT’s long-term effectiveness is unrelated to post-rehabilitation lifestyle, with similar patient numbers from both groups returning either home or to a nursing home. The authors suggest their results should be confirmed in future multicentre studies involving larger participant numbers.

[i] Dehem S, et al. Effectiveness of upper-limb robotic-assisted therapy in the early rehabilitation phase after stroke: A single-blind, randomised, controlled trial. Ann Phys Rehabil Med (2019).